In-Tank Shaft Configuration


Home

>

Training

>

In-Tank Shaft Configuration

686 views

In-Tank Shaft Configuration

In-Tank Shaft Configuration
The shaft configuration selected for a specific mixer application depend on the process requirements such as 'the tank geometry', 'the drive unit', and 'economics'. The selection usually requires analyzing more than one design. However, the final selection must also meet the drive limitations.

The way of the shaft is supported and coupled to the drive is an important consideration. There support and coupling determine the force and moment transfer between the drive and the in-tank shaft. These force and moment affect the bearing service life. the drive gear bearing, and housing deflections. Most manufacturers publish overhung load limitation for the output shaft of their drive.

The illustrates different shaft supporting and coupling methods for three in-tank shaft configurations for top entry agitators, The direct coupled shaft (Fig-A) is supported by drive bearing and is drive by the the drive output gear. In this arrangement, the lower shaft is designed to carry only the impeller loads, and the upper portion is designed to carry both the impeller loads and the gearing reactions. Consequently, the load-carry capacity of the lower shaft is limited by the capacity of the upper drive shaft.

The direct-coupled shaft with steady bearing (Fig-B) used for very long shafts which exceed either the shaft limitations of the drive or the critical speed limitations. The steady bearing reduces the drive reaction and gearing deflections. This reduction generally places the bending moment created by the impeller within the shaft limitations of the drive.

In Fig-C, the quill shaft configuration has two shafts connected by a flexible coupling which primarily transmit torque. This arrangement isolates the drive shaft from the bending moments and thrust of the agitator shaft. The agitator shaft has two independent bearings which are usually mounted on the top and bottom of the drive housing. This top and bottom arrangement has a larger bearing span than that of the direct-coupled shaft. Larger bearing span give smaller bearing reactions for the same overhung loads.

ในส่วนของมาตรฐานการออกแบบของบริษัทฯ
1. เลือกใช้ Solid Shaft เป็นอันดับแรกหากไม่ถูกจำกัดโดยงบประมาณของลูกค้า
2. หากใช้ Hollow Shaft ต้องใช้ Steady Bearing เท่านั้น
3. เพลายาวไม่เกิน 2.5 เมตร อาจจะ ไม่ต้องใช้ Steady Bearing
4. เพลายาวเกิน 3.0 เมตร ต้องใช้ Steady Bearing
5. เพลายาวเกิน 9.0 เมตร ต้องใช้ Steady Bearing 2 Stages

ขอบคุณครับ
สถาพร เลี้ยงศิริกูล (Agitator Designer)
MISCIBLE TECHNOLOGY CO., LTD
Tel: 02.548.0414-5 / 091.7400.555
Line : @agitator
www.miscible.co.th
 




Blogs

-

High Shear Mixer_Ep.4

อ้างอิงจาก The Effect of Stator Geometry on the Flow Pattern and Energy Dissipation Rate in a Rotor-Stator Mixer / A.Utomo, M.Baker, A.W.Pacek / 2009, ขอแสดงทัศนะให้สอดคล้องจาก Ep ที่ผ่านมาที่ว่าด้วย du/dr ครับ อ้างอิงจากผู้วิจัย ได้ทำการใช้ CFD ในเพื่อศึกษา Vector ของความเร็ว ซึ่งจากรูปจะเห็นได้ว่าการเปลี่ยนแปลงของภาวะของระบบ (ความเร็ว) นั้นบ่งบอกถึงทิศทางและขนาดของภาวะ โดยมี Max.Velocity 6m/sec (จริงๆน้อยนะครับ) แต่ใช้ค่า Max-Min ศึกษาได้, กล่าวคือ Head ของ Stator ที่เป็นรูใหญ่จะสร้าง Velocity Drop น้อย และ รูแบบ Slot, รูแบบเล็ก ตามลำดับ นั่นแสดงว่า Shear Rate ของ Head ที่มีรูขนาดเล็กให้ du ที่มีค่ามากที่สุด (ตัด dr ออกเนื่องด้วย Gab ของ Rotor-Stator จาก CFD มีค่าเท่ากัน) นั่นคือ รูขนาดเล็กสามารถทำให้เกิดการเปลี่ยนแปลงของระบบในลักษณะ Emulsion ได้ดีที่สุด สอดคล้องกับสมการที่เคยกล่าวมา แต่....จาก Vector ของความเร็วจะเห็นได้ว่า Stator Head ของรูขนาดเล็กก็ทำให้เกิด Dead Zone of Mixing ได้ง่ายเช่นกัน ตรงนี้บ่งบอกอะไร บ่งบอกว่าการเลือกใช้งานสัดส่วน d/D ของ Rotor-Stator นั่นไม่เหมาะกับถังขนาดใหญ่ หรือ หากต้องการใช้ก็จำเป็นต้องมีเครื่องกวนอีกประเภทที่สามารถขจัด Dead Zone of Mixing ได้ ในลักษณะของ Scraper นั่นเองครับ การทำ CFD มีวัตถุประสงค์และประโยชน์ประมาณนี้เลยครับ แต่มักจะเข้าใจผิดกันว่า CFD คือ สิ่งที่สามารถบอก Mixing Time ได้, บอกกำลังของต้นกำลังได้ ไม่ใช่แบบนั้นครับ ปริมาณในเชิง Scalar ต้องคำนวณครับ, ส่วนปริมาณเชิง Vactor ก็เหมาะกับการทำ Simulation และ ในงานของ Fluid Mixing เราจะใช้ CFD ในการดูแนวโน้มของ Flow Pattern ของใบกวนมากที่สุด (เน้นบริเวณใกล้ๆใบกวนด้วยครับ)

Next